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Analytical and closed-form frequency responses of the longitudinal vibration of
N-stepped rods as well as the coupled system of multi-stepped rods and lumped
elements with non-classical boundary conditions are proposed in this paper. The
closed-form frequency equation for these systems is also obtained. In this article,
a new two-way state-#ow model based on the dynamics of the rod is developed. In
addition to the state-#ow model developed for lumped elements, concentrated
mass, and spring and damper, the exact frequency response of both stepped rod
and the coupled system can be directly written out according to the graph theory.
Since the results are analytical and closed-form, they can be directly implemented
for analytical and numerical analysis without resorting to complex operations,
such as inversion, recursive calculation or iteration computation. Moreover, the
derived equations are feasible not only for the multi-stepped and multi-stage rods
but also for the coupled system of multi-stepped rods and lumped elements.
Finally, the results were checked using multi-stepped rods with classical and
non-classical boundary conditions as well as a combination of stepped rods and
lumped elements to demonstrate the e$ciency of this method.
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1. INTRODUCTION

The study of the longitudinal vibration of rods has been applied in many
engineering "elds [1}3]. The free and forced vibration for a single uniform rod with
a "xed boundary or one coupled with lumped elements, such as mass, spring and
damper, has been investigated [3, 4]. Many studies on deriving the frequency
equation and natural frequency prediction for free vibrations have already been
proposed. Particularly, the analytical frequency equation and exact natural
frequency of the non-uniform rods with typical cross-section variations, such as
polynomial [5, 6], sinusoidal [7] and exponential [8] variations, associated with
di!erent boundary conditions have been obtained, but without the forced response.
For the stepped rods with non-typical cross-section variations, the dynamic
sti!ness matrix method [9, 10] and transfer matrix method [11, 12] were applied
to the free and forced vibration analysis. The classical method is, however, superbly
suited for multi-segment rods by numerical computation. Based on the transfer
matrix method, an algebraic algorithm was also developed for the evaluation of the
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velocity ratio of a general linear dynamic system [13]. Recently, a recursive form
frequency equation for the free vibration of a torsional and rod system was derived
[14]. The closed-form frequency equation for a stepped rod with one to four
segments was also presented. However, expressing the results in analytical form for
general stepped rods using these classical methods is quite complex. Moreover, it is
also di$cult to represent the forced response in analytical form. It is especially very
useful to represent the frequency equation as an analytical and closed-form type for
the analysis of vibration, acoustic and buckling [1, 3, 9].

In this paper, both an analytical and closed-form frequency equation and
a forced response for N-stepped rods are derived. A new two-way state-#ow model
is developed for this analysis based on the wave equation of rod segments. The
results were obtained according to the graph analysis method [15, 16]. The coupled
systems of multiple stepped rods and lumped elements, such as concentrated mass,
spring and damper, are also investigated. Finally, some examples for various
con"gurations of stepped rods and lumped elements with di!erent boundary
conditions are provided to demonstrate the e$ciency of this method.

2. STATE-FLOW MODEL FOR ROD SEGMENT

The longitudinal vibration of a long rod consisting of N uniform stepped segments
is "rstly considered. It is assumed that the force acting on the plane face of an element
segment of the rod is uniform for an applied axial excitation. Let u

i
(x

i
, t) be the

longitudinal displacement at the point x
i
of the ith segment. The di!erential equation

of the ith segment for a small longitudinal displacement can be expressed as
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where o
i
is the mass density of the ith segment of the rod and E*

i
is the complex

Young's modulus of the ith segment de"ned as E
i
(1#jd

i
), with d

i
representing the

internal damping factor associated with the dynamic Young's modulus E
i
of the ith

segment and j equal to J!1. When one end of the rod, at x
i
"l

i
of the Nth

segment, is "xed and subjected to sinusoidal excitation at the other end, the general
solution of the displacement is given as
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where k
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is the wave number of the ith segment, de"ned by k
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"u/c

i
with c
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the phase speed of wave propagation c
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"(E*
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the end conditions of the segment i given as
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where;
i~1

and ;
i
are the complex amplitudes of the longitudinal displacement at

both ends of the ith segment for x
i
"0 and x

i
"l

i
. The force f

i
(x

i
, t) that acts on the

plane faces of the segment is dependent on the displacement u
i
(x

i
, t) of the segment

in the rod expressed as
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where A
i
is the cross-segment area of the ith segment of the rod and f

i
(x

i
, t) is

de"ned as positive for tension force. Substituting equation (2) into equation (5), the
force at the location x

i
of the segment i can be expressed as
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From equation (6), we see that a
i,3

and a
i,4

can also be expressed as the complex
amplitudes of the forces that act on the ends of the ith segment, F

i~1
for x

i
"0 and

F
i
for x

i
"l

i
. Thus, the relationship between each complex amplitude of the force

and displacement at both ends can be expressed as
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where C
i
and S

i
are the symbols of cos(k

i
l
i
) and sin(k

i
l
i
). According to the above

equations (9) and (10), these relationships can be expressed as a two-way
state-#ow model as shown in Figure 1, in which ¹

i
is denoted as tan(k

i
l
i
). For the

graph model of each segment, two variables correspond to one force and one
Figure 1. Two-way state-#ow model for the ith rod segment.



Figure 2. State-#ow model for the multiple segment rod.
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displacement, with opposite directions at the right or left end. Moreover, the
lower-side state-#ows at both ends are all forces whose direction is from left to
right. The upper-side state-#ows at both ends are also in the same direction. Thus,
both state-#ow models can be connected in a series. This technology can be
extended over the entire system to construct the state-#ow graph model of the
N stepped rods as shown in Figure 2, in which the input state-#ow from the left end
matches the direction of the excitation.

3. FREQUENCY RESPONSE OF STEPPED ROD

The complex frequency response of any state of the state-#ow graph model can
be calculated by the gain formula [17, 18] described as

H"

+
i
P
i
D

i
D

, (11)

where H is the complex frequency response function, P
i
is the path gain of ith

forward path, D is the determinant of the graph, and D
i
is the cofactor of the

ith forward path determinant of the graph with the loops touching the ith forward
path removed.

For the graph model of a multiple stage rod, the force transmissibility from f
0
(t)

to f
N
(t) is de"ned as the magnitude of the complex frequency response ratio of F

N
(u)

to F
0
(u), denoted as DH

FN
D. Based on Figure 2, the number of the forward path from

the variable F
0

to F
N

is only one, in which the forward path gain is

P
1
"

N
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j/1

C
j
. (12)

With respect to this forward path, the cofactor of this path is 1. From Figure 2, we
see that the path of a state-#ow forms a closed-loop when the state-#ow passes
through any vertical path from the lower to higher horizontal path, through the
higher horizontal path from right to left, through any vertical path from the higher
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to lower horizontal path, and through the lower horizontal path from the left to the
starting point. Thus, there are N(N#1)/2 loops in the graph model of the system.
Thereby, the determinant of the graph can be expressed as

D"1#
N
+

i2/1

i2
+

i1/1

(!¸
i1 , i2

)#
N
+

i4/2

i4
+

i3/2

i3~1
+

i2/1

i2
+

i1/1

2
<
j/1

(!¸
i2j~1, i2j

)#2#

N
<
j/1

(!¸
j, j

),

(13)

where ¸
i, j

is the loop gain of each closed loop of the state-#ow graph model de"ned
as
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Substituting equations (12) and (13) into equation (11), the force transmissibility
leads to
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When the complex frequency response ratio of the force acting on the right end of
the segment i to the force excitation on the left end of the rod, denoted as H

Fi
, is

considered, we see that there is only one forward path with path gain < i
j/1

C
j
from

the variable F
0

to F
i
as shown in Figure 2. Moreover, the cofactor of this forward

path which is formed by the part of the graph model on the right side of F
i
can be

represented as
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We see that equations (13) and (16) are power series with the same structure. Thus,
both equations can be rewritten in general forms as

D
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where
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We see that the natural frequency of the system is equal to the eigenvalues of the
denominator of H

FN
. The frequency equation can be given as
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Substituting equations (12), (17) and (18) into equation (11), the complex frequency
response H

Fi
leads to
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When the frequency response ratio of the displacement at the right end of the ith
segment to the excitation force H

Ui
is considered, we see N-i forward paths from
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. The path gain for each forward path is
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The displacement and force response at the location x
i
of the segment i can be

obtained from equations (2) and (6) by substituting the results of equations (22) and
(21) into the coe$cients a

i,1
, a

i,2
, a

i,3
and a

i,4
.
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4. RESPONSE FOR RODS WITH IDENTICAL MATERIAL

If each segment of the rod is made by the same material, the structure properties
E*
i

and o
i
of each segment are identical. When the length of each segment is also

identical, the gain of each vertical path of the graph model will be dependent on the
area of the segment. Then, the loop gain de"ned as equation (14) becomes

¸
i,k
"

A
k

A
i

S2C2(k~i), (23)

where C and S are the functions cos(kl) and sin(kl), in which l is the length of each
segment of rod.

When the area of each segment is also identical, the loop gain ¸
i,k

in the graph
model can be reduced to S2C2(k~i). Thus, the force frequency response ratio of
F
i
associated with excitation F

0
, H

Fi
, can be simpli"ed to (see the appendix)

H
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Then the force transmissibility DH
FN

D can be obtained from equation (24) given as
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In the same way, the displacement frequency response ratio of;
i
associated with

excitation F
0
, H

Ui
, leads to

H
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"

!sin((N!i) lk)
AE*k cos(Nlk)

. (26)

Equations (26) and (24) coincide with the displacement and force frequency
response ratios at x"(i/N) l of a uniform rod with length l for the conditions of
a "xed end at x"l and subjected to a sinusoidal excitation force at the other end.

5. COMBINED SPRING, MASS AND ROD SYSTEM

When a massless spring is connected by a series with (i!1)th and (i#1)th rod
segments, the dynamic of the spring is given as

;
i~1

";
i
!

F
i

K
i

, (27)

where K
i
is the sti!ness of the spring. Based on equation (27), a two-way state-#ow

model with the same structure for the rod segment is constructed as shown in



Figure 3. State-#ow model for a massless spring.

Figure 4. State-#ow model for a concentrated mass.
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Figure 3. Thus, the derived formulas for force and displacement frequency response
in equations (21) and (22) can also be applied. The dynamic equation and the
two-way state-#ow model of the massless spring can be extended to a massless
damper by replacing K

i
with juB

i
, in which B

i
is the damping coe$cient of the

damper. For a parallel connection of a spring and a damper system inserted in
series, the same state-#ow model as in Figure 3 can also be applied by simply
replacing K

i
with K

i
#juB

i
. In the same way, this state-#ow model can be

extended to a connected series of multiple springs and dampers based on the model
reduction method [15, 16].

If a concentrated mass M
i
inserted into (i!1)th and (i#1)th rod segments is

considered, the dynamic equation of the mass can be given as

F
i
"F

i~1
!u2M

i
;

i~1
. (28)

Thus, the two-way state-#ow model for the concentrated mass can be expressed as
Figure 4, which has the same structure as that of the rods. From Figures 4 and 5, we
see that both the state-#ow models for the concentrated mass and spring can be
combined as a single two-way state-#ow model, identical to the state-#ow model
developed in the previous paper [15]. Thus, the compound lumped mass, spring
and damper systems can be combined in this state-#ow model developed for the
stepped rod. Moreover, the analytical results developed for the stepped rod can be
applied for the combined rod and lumped mechanical system.



Figure 5. State-#ow model for a lumped mass at the boundary.
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If a concentrated mass M
N

is located at the right end of the rod to replace the
"xed end boundary, the dynamics of the equation of this concentrated mass can be
given as

;
N~1

"

F
N~1

u2M
N

. (29)

Based on equation (29), the state-#ow model for this ending concentrated mass is
shown in Figure 5.

Since Figures 3}5 have the same structure as Figure 1, these state-#ow models
can be replaced by a general model, which has the same structure as Figure 1 as well
as the gains G

1, i
, G

2, i
and G

3, i
in the locations of !A

i
E*
i
k
i
¹

i
, C

i
and !¹

i
/A

i
E*

i
k
i

of Figure 1. The loop gain of each closed-loop of the state-#ow graph model is
rede"ned as

¸
i, j
"G

1, i
G

3,j

j
<
k/i

G2
2,k

. (30)

Thus, the previously derived formulas for the force transmissibility, force and
displacement frequency response, and frequency equation can be used without
modi"cation.

6. EXAMPLES

A four-segment stepped free-"xed rod with an equal length, l, subjected to a force
excitation at the free end as shown in Figure 6 is "rst considered. It is assumed that
the structural properties, E*, and o of each segment are identical. The area of each
segment is based on the relationship A

1
: A

2
: A

3
: A

4
"1 : 2 : 3 : 2. If the force

transmissibility is to be calculated, the two-way state-#ow graph of the system
can be obtained using four state-#ow graph models of rod segment, as shown
in Figure 2, connected by a series. We see that one forward path exits from
the excitation to F

b
with a gain C4 and ten loops in the graph model. These loop



Figure 6. Stepped rod with identical structural properties.
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gains are

¸
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"¸
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"1
2
C2S2, ¸
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3,4
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2
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By the derived formula, equation (15), the force transmissibility to the "xed
boundary can be obtained as

DH
Fb

D"
1

D25
4

C4!6C2#3
4
D
. (32)

Therefore, the frequency equation of the stepped rod is

25
4

C4!6C2#3
4
"0. (33)

The natural frequency of the rod is equal to the eigenvalues of equation (33):

u"

Jo

lJE* Acos~1S3$
J69

4
$2nnB for n"0, 1, 2,2 (34)

Since it may not be easy to compare the computed results of the four-segment
rod by the classical method, a two-segment rod with the same dimension and
properties as those of the "rst two segments of the rod in the previous example is
considered. In the same way, the frequency equation and the natural frequency of
the two-segment rod can be obtained as

3C2!1"0, (35)

u"

Jo

lJE* Acos~1
1

J3
$2nnB for n"0, 1, 2,2 (36)

Both results are identical to those calculated by the classical method in common
textbooks [3, 9].



Figure 7. Multi-segment rod partially embedded in an elastic foundation.

Figure 8. Concentrated mass on the end of multi-segment rod.
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The third example is a stepped rod partially embedded in an elastic foundation as
shown in Figure 7. The frequency response ratio of the force acting on the spring
F
2

to the force excitation from the free end is considered. The state-#ow graph
model can be con"gured using two graph models for the rod segment as shown in
Figure 1 and one graph model for the spring as shown in Figure 3 connected by
a series. According to the graph model, we see that there are "ve loops and one
forward path from excitation to F

2
, in which the forward path gain is C2 and the

loop gains are
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C
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S
2
. (37)

The frequency response ratio can be calculated by equation (21) expressed as
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(38)

If the spring and the "xed boundary of the third example are replaced by
a concentrated mass M

3
as shown in Figure 8, the state-#ow graph model for the

spring can be replaced by that for a concentrated mass located at the end as shown
in Figure 5. When the purpose is to determine the frequency response of the
displacement of the mass subjected to force excitation F

0
, there will also be one

forward path and six loops. The forward path gain and these loop gains are similar
to those for the third example except that !K

3
is replaced by u2M

3
. Thus, the



Figure 9. Compound rod and concentrated mass and spring system.
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results can be calculated by equation (22) based on the graph model as

;
3
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A compound rod and lumped mass and a spring are considered in the "fth
example as shown in Figure 9. The state-#ow graph model can be constructed in the
same way. Moreover, the parts for the lumped mass and spring mass can be reduced
to a single two-way state-#ow model similar to that used for a rod segment. Thus, the
graph model of the system has six loops. If the frequency response of the extension
displacement of the spring ;

s
is to be calculated, equation (22) can be "rstly applied

to the calculation of the response of;
2
and;

3
. Then, the results will be obtained as
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2
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2
u)))

.

(40)

7. CONCLUSIONS

The analytical and closed-form frequency response of a longitudinal force and
displacement of multi-stepped rods and the coupled system of the stepped rods and
lumped elements with non-classical boundary conditions subjected to force
excitation at the free end has been derived. In this paper, a two-way state-#ow model
of the rods was "rstly developed according to the longitudinal dynamics of rods.
Based on the developed model, the frequency response of the force and displacement
of each segment of stepped rods was derived. Moreover, the coupled system of
multiple stepped rods and lumped elements, spring, damper and concentrated mass
system was also investigated. Finally, some examples of the force and displacement
response of multi-stepped rods with identical and di!erent properties, stepped rods
with non-classical boundary conditions, coupled stepped rods and lumped
elements have been examined to show the feasibility of this method.

Although only the longitudinal vibration of rods and lumped elements have
been investigated in this article, this method and the derived results can be
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extended to other dynamic systems governed by the one-dimensional wave
equation.
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APPENDIX

The force frequency response ratio of F
i
associated with excitation F

0
, H

Fi
, is

given as equation (21). Since each property of the rods is identical, the loop gain ¸
i,k
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in the graph model is reduced to S2C2(k~i). Thus, the denominator of H
Fi

as shown
in Equation (21) can be expressed as

N
+
k/0

E
1,N,K

"1!S2 (N#(N!1)C2#(N!2)C4#2#C2(N~1))#S4A
N(N!1)

2!

#

(N!1) (N!2) (N!4)
2 !

C2#2#(N!1)C2(N~2)B
!S6A

N(N!1) (N!2)
3 !

#

(N!1) (N!2) (N!3) (N!3)
3!

C2

#2#

(N!1) (N!2)
2 !

(C2(N~3)B
#2#S2N~2(N#(N!1)C2)#S2N

"C2N!A
N
2 BC2N~2S2#A

N
4 BC2N~4S4!A

N
6BC2N~6S6#2

"CN cos(Nkl). (A1)

For the numerator of H
Fi

as shown in equation (21), we see that

i
<
j/1

C
j
"Ci . (A2)

Since each property of the rods is identical, the relationship between each loop
gain of the graph model is given as

¸
i, j
"¸

i`k,j`k
, for k"1, 2,2 , N (A3)

Then,

N~i
+
k/0

E
i`1,N,k

"

N~i
+
k/0

E
1,N~i,k

. (A4)

Equation (A4) has a similar form as equation (A1) except the subscripts N replaced
by N!i. Thus, equation (A4) can be derived in the same way. Substituting the
results of equations (A3) and (A4) into the numerator of Equation (21) will give us

i
<
j/1

C
j

N~i
+
k/0

E
i`1,N,k

"CN cos((N!i)kl). (A5)

Based on equations (A1) and (A5), the frequency response of force ratio H
Fi

can
be represented as equation (24).
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